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Abstract
We report a study on the ground states of the triangular antiferromagnetic
Ising model with a spacial anisotropy in the magnetic field. By the
use of the level-spectroscopy and the density-matrix renormalization-group
methods, we precisely determine the field-induced Berezinskii–Kosterlitz–
Thouless transition point and the Pokrovski–Talapov transition points with an
anisotropic nature. Then we provide the global phase diagram of the present
model.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Due to the geometric frustrations, there exist some classical spin systems possessing the
macroscopic ground-state entropy. The triangular antiferromagnetic Ising model (TAFIM) with
the nearest-neighbour (NN) coupling is a typical one of them [1]. Further, it was exactly proven
that the correlation functions of physical quantities exhibit power-law decays in the ground
state [2], so the ensemble also possesses critical properties. There is a long history of research
on various perturbation effects on this ground-state criticality, where some exact mappings to
the triangular Ising solid-on-solid model and the fully packed loop model on the dual lattice,
etc, have been utilized [3–7]. Among them, the string representation based on the fact that
the ground-state spin configurations can be classified according to the number of strings (see
below) provides an intuitive connection to one-dimensional (1D) quantum systems under the
path-integral representation [3].

We study an anisotropic TAFIM in a magnetic field. The reduced Hamiltonian is

H(K1, μ, H ) =
∑

〈 j,k〉
K jkδσ j ,σk − H

∑

j

δσ j ,0. (1)

The binary variable σ j = 0, 1 is on the j th site of the triangular lattice �, and the first
(second) sum runs over all NN pairs (sites). The AF coupling K jk takes two values K1 + μ
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Figure 1. (a) A ground-state configuration. Dotted lines exhibit �; the long (short) side of the
rectangle frame is in the x1 (x2) direction. The spins are parallel, � (antiparallel, ⊗), to the field
direction. Rhombuses drawn by thick lines and three thick red lines in the x2 direction give the
tiling and the string representations, respectively. (b) A vertex representation (see section 3) of the
broken-line-box region in (a).

or K1 depending on whether the bond 〈 j, k〉 lies in the x1 direction or not (see figure 1(a)).
Here, supposing that the j th site is specified by two integers ( j1, j2), we define a quantity
Q = ∑

j1
N j1, j2 with N j1, j2 = 1 − δσ j1, j2 ,σ j1+1, j2

for all j2, and further restrict ourselves to the
zero temperature case K1 → ∞. Then Q becomes independent of j2 and counts the number of
strings running in the x2 direction. The Boltzmann weight per row is given by eμQ , so that the
anisotropy parameter μ plays the role of a chemical potential to control the number of strings
(see figure 1(a)) [3].

Our main goal is to numerically obtain the phase diagram of the model (1) in its ground
state K1 → ∞. For this, let us first review the effective field theoretical description on its
long-distance behaviours and summarize the nature of the phase transitions. We shall start with
the isotropic case μ = 0. For H = 0, the scaling dimension of the staggered magnetization
(S) is exactly given by xS = 1

4 [2], while the dimension of the uniform magnetization (s) by
xs = 9

4 [4]. Thus the magnetic field is irrelevant, and the critical region continues up to a
certain value Hc. For H > Hc, the criticality disappears and the threefold-degenerate ground
state with the

√
3 × √

3 structure of the sublattice is realized, where a majority spin is in the
field direction. The transition at Hc is the Berezinskii–Kosterlitz–Thouless (BKT) type, and is
described by the sine–Gordon Lagrangian density

L[φ] = 1

2π K
(∇φ)2 + y

2πα2
cos 3

√
2φ,

(
K 	 4

9

)
, (2)

where y ∝ H and the continuous field in the two-dimensional Euclidean space (x1, x2) satisfies√
2φ + 2π = √

2φ. Next, let us consider the anisotropic case μ �= 0. While the magnetic field
H > Hc favours the commensurate (C) ordered phase through the potential cos 3

√
2φ, μ which

newly introduces a local string-density term ∂1φ to the effective theory (2) tends to stabilize an
incommensurate (IC) liquid phase [8]. Therefore, the Pokrovski–Talapov (PT) transition may
occur between the C and IC phases [3, 7, 9]. Since two different types of phase transitions are
expected, we employ the proper numerical methods to treat them in following sections.

2. Results in the isotropic case µ = 0

There have been several attempts to numerically estimate Hc. Blöte and Nightingale (BN)
investigated this problem in detail by the transfer-matrix method [5]. Actually, they evaluated
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Figure 2. (a) The extrapolation of finite-size estimates (circles) to the limit L → ∞. Diamonds are
estimates according to the KT criterion (see the text) taken from table 1 of [5]; the one with the error
bar shows BN’s estimation of Hc. (b) The expectation value of the twist operator for L = 27. The
inset shows the magnification around the transition point Hc, where the three spline fitting curves
for z(H ) are given for L = 15 (red), 21 (blue), and 27 (black).

finite-size estimates Hc(L) by numerically solving the equation for the scaled gap xS(H, L) =
2
9 based on the KT criterion (see below). Then, in order to accelerate the slow convergence
of Hc(L), the iterated fits taking account of the logarithmic correction were performed. On
the other hand, it is widely recognized that the level-spectroscopy (LS) method provides an
efficient way to treat the BKT transitions [10, 11]. Therefore, for its application, let us consider
the system on � with M (→∞) rows in the x2 direction of L (a multiple of three) sites in
the x1 direction wrapped on the cylinder and define the transfer matrix connecting the next-
nearest-neighbour rows. Since Q is the most important conserved quantity in the transfer, we
explicitly specify a block of the matrix as TQ(L) and denote its eigenvalues as λp,Q(L) or
their logarithms as E p,Q(L) = − 1

2 ln |λp,Q(L)| (p specifies a level). In the isotropic case, the
smallest one corresponding to the ground state is in the block Q0 = 2L/3 [3, 5]; we shall
denote it and excitation gaps from it as Eg,Q0(L) and 
E p,Q(L) = E p,Q(L) − Eg,Q0(L),
respectively. Then the conformal invariance provides direct expressions for the central charge
c and a scaling dimension x p,Q in the critical system as Eg,Q0(L) 	 L f − πc/6Lζ and

E p,Q(L) 	 2πx p,Q/Lζ . Here ζ (=2/

√
3) and f are the geometric factor for � and a

free energy per site, respectively.
To determine the BKT point, Nomura pointed out the importance of logarithmic

corrections in the renormalized scaling dimensions x(l) = 
E(L)/(2π/Lζ )(l = ln L) [10].
Especially in the present case, the so-called M-like operator plays an important role. Writing
its dimension as x0(l), it has been discussed in [12] that the level-crossing condition, x0(l) =
4 − 9xS(l), provides a finite-size estimate of the BKT point, where xS(l) is the dimension of
S. Since these operators are described by φ, we can calculate their dimensions from excitation
gaps found in the Q0 block [12]. We perform the exact-diagonalization (ED) calculations of
TQ0(L) for systems up to L = 30. In figure 2(a), we show the extrapolation of the finite-size
estimates Hc(L) to L → ∞ using the least-squares fitting of the polynomial in 1/L2 (circles
with a curve). For comparison, we also plot the finite-size estimations given in table 1 of [5]
(diamonds). Then, we find that while our result, Hc 	 0.5229 ± 0.001, is consistent with BN’s
estimation (the diamond with error bar), it is more accurate owing to the fast convergence of
finite-size estimates, which is one of the benefits of using the LS method.

To see to what extent the string alignment is established on the upper side of Hc, it is
interesting to observe the expectation value of the twist operator which has been discussed
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Figure 3. Vertices and weights. Thin (blue) and thick (red) lines are drawn in the same manner as
figure 1(b). The mark � (⊗) on � shows the parallel (antiparallel) spins to the field. Numbers on
four edges of each vertex denote four-state link variables τn .

in research on 1D quantum systems [13]. In the present case, it is given by z(H ) =
〈exp[(6π i/L)

∑L
j1=1 j1 N j1, j2]〉. This takes unit value for the completely ordered states with

the
√

3 × √
3 structure, while it is expected to be zero for the critical phase. In figure 2(b),

we exhibit the numerical calculation results for finite-size systems up to L = 27. We find that
z(H ) is real for all H , and zero at H = 0. Further, with the increase of H , z(H ) increases
and converges to unity, which clearly reflects the ordering of the string alignment. In the inset,
we provide the system-size dependence of z(H ) in the weak field region. Although the precise
estimation of Hc is difficult from z(H ) [13], we can observe the crossing points (arrows in the
inset) between different system-size data which are approaching the transition point. Thus, we
can also recognize the existence of the phase transition from z(H ).

3. Results in the anisotropic case µ �= 0

As discussed in section 1, the anisotropy parameter μ controls the number of strings and
brings about the PT transition for H > Hc, so the estimation of the incompressible region
observed in the μ dependence of Q (or its density ρ = Q/L) is necessary. For this,
we employ the density-matrix renormalization-group (DMRG) method [14] and estimate the
μ–ρ curve from the finite-size-system data as μ 	 [Eg,Q+2(L) − Eg,Q(L)]/2 [7]. In order
to treat the transfer matrix in our problem with DMRG, we use the vertex representation
of the Boltzmann weight, which enables us to explicitly handle the number of strings. We
define the vertex on each horizontal bond of � expressed as the crossing points of colored
lines in figure 1(b). The details of the vertices and their weights are summarized in figure 3.
The vertices with thin blue and thick red lines (the right eight) describe the strings coming
from the south east or south west direction and going out to the north east or north west
direction, whereas those with blue lines (the left two) play the role of a spacer between the
strings. The magnetic field effect can be taken into account by giving the weight v±1 = e±H/4

for the vertex having the excess of the parallel (antiparallel) spins to the field. Then, as
defined in the figure, we assign a four-state link variable (τn = 0, 1, 2, 3) on each edge of
the vertex. Here note that, due to the ground-state condition of TAFIM, ten types of vertices
have nonzero weights, but, for the case H = 0, the problem is described by a five-vertex
model.

4



J. Phys.: Condens. Matter 19 (2007) 145236 H Otsuka et al

-1 0 1
0

0.5

1

H
/(

2+
H

)

μ−

μ/(1−μ)

μ+

μ/(1+μ)

μ0

(b)

-2 0 2 4
0

0.5

1

ρ

μ

H=4,  DMRG   L=60

H=0,  Exact

H=2,  DMRG   L=60

μ+(4)μ−(4)

μ0(4)
(a)

Figure 4. (a) The μ–ρ curves: marks with the dotted line show DMRG data, and the solid line
exhibits the exact result at H = 0. The flat region with ρ = 2

3 corresponds to the string-density
plateau [μ−(H ),μ+(H )]. μ0(H ) is the threshold below which the string is absent. (b) The ground-
state phase diagram (typical configurations are also given). On the left of the solid curve μ0(H ),
ρ = 0. The cross at μ = 0 shows the BKT point obtained by the LS method. The filled (open)
circles show estimates μ±(H ) by the DMRG (ED) method. Dotted curves give a guide to the eyes.

On the basis of the vertex representation, we construct the diagonal-to-diagonal transfer
matrix of two layers TDMRG

{τ1···τ2L },{τ ′
1···τ ′

2L } depicted in figure 1(b). TDMRG is suitable for a
renormalization process in DMRG, since it can be represented as a product of the local
vertex weights carrying string number. However, instead of this benefit, the matrix becomes
asymmetric, for which the definition of the reduced density matrix is not unique. For this issue,
we employ the symmetric density matrix constructed from the right eigenvector of TDMRG,
and perform the finite-system-size DMRG calculations in the subspace of a fixed Q. In actual
calculations, we have confirmed that the free energy value converges sufficiently within the
base number m = 64 [14].

We show the data of the μ–ρ curve in figure 4(a). While, like the exact solid curve ρ(μ) =
arccos(1/2e2μ − 1)/π for H = 0 [3], ρ is a smooth function of μ showing the compressive
liquid state for H � Hc, there is the string-density plateau with ρ = 2

3 for H > Hc (in this plot,
the top and the bottom of each step correspond to (Q+2)/L and Q/L respectively). So, we can
estimate the C–IC phase boundary lines from the edges of the plateau μ±(H ). In figure 4(b),
we provide our phase diagram [12]. Here, the exact threshold μ0(H ) = − ln[2 cosh(H/4)],
below which the doubly degenerate vacuum of strings with ρ = 0 is realized (see figure 4(a)), is
also given [15]. The cross at μ = 0 shows the BKT point obtained by the LS method. For large
H , we can use the ED data and the extrapolation formula μ±(H, L) 	 μ±(H ) + constant/L2

(open circles). For H � 4, assuming the square-root behaviour around the plateau, we estimate
μ±(H ) from the ρ–μ curve obtained by DMRG. Then, we find that two PT-transition lines
μ±(H ) seem to be terminated at the BKT point (μ, H ) = (0, Hc). For H 	 Hc, it is
still difficult to determine the narrow plateau region corresponding to the exponentially small
energy gap even by the use of the DMRG method. However, by combining the LS result and
the DMRG data, we can provide a reliable phase diagram.

Lastly, it is worth pointing out that the magnetization process observed in the ground
state of the S = 1

2 frustrated spin chain system exhibits the plateau at 1
3 of the saturation

magnetization [16], and the plateau formation is described by the same field theory as the
present one. The μ–ρ curve in figure 4(a) can be thus viewed as the magnetization curve
observed in the 1D quantum spin system.
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